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ON THE CONVERGENCE OF SHOCK-CAPTURING 
STREAMLINE DIFFUSION FINITE ELEMENT METHODS 

FOR HYPERBOLIC CONSERVATION LAWS 

CLAES JOHNSON, ANDERS SZEPESSY, AND PETER HANSBO 

ABSTRACT. We extend our previous analysis of streamline diffusion finite ele- 
ment methods for hyperbolic systems of conservation laws to include a shock- 
capturing term adding artificial viscosity depending on the local absolute value 
of the residual of the finite element solution and the mesh size. With this term 
present, we prove a maximum norm bound for finite element solutions of Burg- 
ers' equation and thus complete an earlier convergence proof for this equation. 
We further prove, using entropy variables, that a strong limit of finite element 
solutions is a weak solution of the system of conservation laws and satisfies 
the entropy inequality associated with the entropy variables. Results of some 
numerical experiments for the time-dependent compressible Euler equations in 
two dimensions are also reported. 

1. INTRODUCTION 

In this note we continue our study of streamline diffusion finite element 
methods (SD methods for short below) for hyperbolic conservation laws started 
in [12, 13]. SD methods may be viewed as Petrov-Galerkin variants of the 
usual Galerkin finite element method with certain modifications of the test func- 
tions giving added stability without sacrificing accuracy (the error is of order 
O(hk+l12) for smooth solutions if polynomials of degree k are used). We re- 
call that conventional finite element methods for hyperbolic problems lack in 
either stability, like the standard Galerkin method, giving spurious oscillations 
if the exact solution is nonsmooth, or in accuracy, like the classical artificial 
diffusion method with considerable smearing of sharp fronts and at most first- 
order accuracy. The basic SD method was proposed by Hughes in 1980/81, and 
the method has since been developed, theoretically and computationally, into a 
general finite element technique for hyperbolic-type problems with applications 
to convection-diffusion equations, the incompressible and compressible Euler 
and Navier-Stokes equations, see [5-9, 10, 11, 12-14, and 16-18]. 

The basic modification of the test functions in the SD method is obtained 
by adding a multiple of (a linearized form of) the hyperbolic operator involved 
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applied to the test function (in a scalar convection problem, this corresponds to 
introducing artificial diffusion acting in the direction of the streamlines). The 
residual of the finite element solution will then be controlled in L2 to a certain 
degree, which gives added stability. We recall that the usual Galerkin method 
is related to a weak formulation of the given hyperbolic equation, and thus we 
may say that the basic SD method seeks to find an approximate solution which 
satisfies (approximately) the given hyperbolic equation in both a weak and a 
strong sense. 

Although the basic SD method gives a dramatic improvement over the stan- 
dard Galerkin method, some over- and undershoots of approximate solutions 
may still persist at discontinuities or shocks. Recently, in the context of sta- 
tionary problems, a second modification of the test functions was proposed in 
[7, 8], consisting of adding a certain 'shock-capturing' term which introduces 
some 'crosswind' control close to discontinuities. In numerical experiments this 
eliminated the oscillations at shocks without degrading the accuracy in smooth 
regions, and thus gave an SD method with very satisfactory properties, see [7] 
and also [12, 13], where the shock-capturing idea was extended to SD methods 
for time-dependent problems. However, no theoretical analysis explaining the 
remarkably improved properties of the shock-capturing SD method is available 
in the literature. 

The main purpose of this note is now to initiate such an analysis. To this 
end, we shall first give a different interpretation of the shock-capturing term 
than that used in [7, 9] and [12, 13]. We shall view this term as a certain ar- 
tificial viscosity with viscosity coefficient depending (locally) on the residual of 
the finite element solution, where the residual is obtained by inserting the finite 
element solution into the given hyperbolic differential equation. In fact, from 
this perspective we are led to somewhat different shock-capturing terms, e.g. for 
nonhomogeneous problems or time-dependent problems, than those proposed 
in [7, 9]. Further, by viewing the shock-capturing method in this way, it seems 
natural to expect the method to add significant artificial viscosity close to a 
discontinuity where the residual will be large, but only little in smooth regions 
where the residual may be small. Thus, the shock-capturing term would seem 
to act qualitatively as the artificial viscosity introduced in many finite difference 
schemes for hyperbolic conservation laws. Continuing this analogy, it seems as if 
the shock-capturing SD method, through the streamline diffusion modification, 
introduces high-order consistent 'streamline' artificial viscosity in the whole re- 
gion, and through the shock-capturing term, first-order viscosity close to shocks 
with a continuous transition from first to higher order away from shocks. Thus, 
with piecewise linear continuous basis functions (k = 1) the shock-capturing 
SD method would seem to have the qualitative properties of a 'quasi second- 
order' finite difference scheme, which is second-order in smooth regions and 
first-order close to shocks. Recalling that the main difficulty in constructing 
such difference schemes is the artificial viscosity term, it seems possible that the 
shock-capturing SD method could offer a solution to this fundamental problem 
with wide applicability, since general meshes, variable coefficients and boundary 
conditions do not pose extra difficulties as in the finite difference case. To give 
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experimental support of this belief, we present some computational results for 
the time-dependent compressible Euler equations in two space dimensions. 

With the new interpretation of the shock-capturing term, the extra stability 
introduced through this term becomes visible. As one example of how the 
shock-capturing term may be used in the theoretical analysis, we shall in this 
note prove a maximum norm bound for the SD solution of Burgers' equation 
in the case k = 1 , thus filling a gap in an earlier convergence result [12]. 
Further convergence results based on a uniqueness result for measure-valued 
solutions are given in [16-18] for higher-order accurate shock-capturing SD 
approximations of a general scalar conservation law in several dimensions, with 
and without boundary conditions. 

We now give an outline of the content.of this paper, starting by recalling 
some of our earlier results. In [12] we proved the following two results for the 
basic SD method applied to Burgers' equation: (A) If a sequence of finite ele- 
ment solutions converges boundedly a.e. to a function u, then u is an entropy 
solution of Burgers' equation. (B) If the finite element solutions stay uniformly 
bounded, then a subsequence will converge a.e. to a function u. In this note 
we will prove that the hypothesis of (B) holds for the shock-capturing method 
in the case k = 1 , that is, we will prove the following result: (C) The finite 
element solutions given by the shock-capturing SD method with k = 1 are uni- 
formly bounded. Combining (A)-(C) we then obtain that a subsequence of the 
finite element solutions given by the shock-capturing SD method with k = I 
will converge to an entropy solution of Burgers' equation. The uniqueness of 
this solution follows as in [16] by showing that a limit of finite element solu- 
tions is an entropy solution in the Kruzhkov sense, so that all convex entropy 
inequalities are satisfied. 

In [ 13] we proved for general hyperbolic conservation laws written in entropy 
variables a consistency result of type (A), that is, we proved that limits of finite 
element solutions given by the basic SD method are entropy solutions of the 
conservation law. In this note we extend this result to the shock-capturing SD 
method. 

The material is organized as follows: In ?2 we introduce the shock-capturing 
SD method for systems of hyperbolic conservation laws (written in entropy 
variables) and discuss the choice of the streamline and shock-capturing modifi- 
cations. In ?3 we prove the result of type (A) for systems in several dimensions. 
In ?4 we prove the result (C) in the case of Burgers' equation. Finally, in ?5 we 
briefly discuss some aspects of the numerical implementation of the method, 
which also includes automatic adaptivity of the finite element meshes, and we 
give some computational results related to the time-dependent Euler equations 
for compressible flow in two dimensions. 

We denote by C a positive constant independent of the mesh parameter h, 
not necessarily the same at each occurrence. Further, for X c Rd we denote by 
H'1 (w) the Sobolev space of functions with derivatives of order < n belonging 
to L2(wO), and we use the notation 

11him - 1 IIIII"1(c) ) 1 s 111 1 1 IIIL,(co)~ 
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2. SHOCK-CAPTURING SD METHODS FOR SYSTEMS OF CONSERVATION LAWS 

We consider a time-dependent hyperbolic system of conservation laws in Rd, 
d > 1, 

d 

(2. 1a) Ut + ,fi (u) = t> O. x E R 
i1 1 

(2.1b) u(0, x) =uO(x), x c Rd, 

where u = (uA, ...U, un) , m > 2, fl: Rm m R' are given smooth functions, 
i = 1, ..., d, and uO c [L2(lRd)]m is a given initial function with compact 
support. Carrying out the differentiation in (2.1a), the system takes the form 

d 

(2.2a) u? + ZAu =0, t>O, xcERd, 
i1 1 

(2.2b) u(0, x) =uO(x), x cRd, 

where Al = Al(u) = = the Jacobian of f' are m x m matrices. We 
shall assume that (2.1) is equipped with a strictly convex entropy q(u) with 
associated entropy flux q(u) = (q'(u)) satisfying the compatibility relation 

(2.3) u qu i=1, , m, 

where qu denotes the gradient of q(u). This assumption is satisfied by the 
usual systems of gas dynamics [4, 6]. The entropy condition for (2.1) then 
reads 

d 

(2.4) q(u)t + E? q(u)x < ? . 
i~ 1 

Introducing now the (invertible) change of variables [4, 6, 19] u = qu(u), the 
system (2.2) takes the form 

d 

(2.5a) AT + EZAiuX =0, t>O, xcER, 
i1 1 

(2.5b) -u(O, x) = u(X), x E Rd. 

where AO = au/O-u and Al = A1AO . Using the convexity of q and the com- 
patibility (2.3), it follows that the Al are symmetric, with AO positive defi- 
nite. Note that if the Al are already symmetric, then q may be taken to be 
q(u) = 2 u12, in which case -u = u and (2.1) and (2.5) coincide; but in general, 
q is not quadratic and qu is nonlinear. 

The shock-capturing SD method for (2.1) will be based on the formulation 
(2.5) using the entropy variables -U. The advantage of using (2.5) as the starting 
point for a (Petrov-)Galerkin method may be explained as follows (cf. [5]). We 
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first note that integrating the entropy inequality (2.4) in x and t gives control 
of the entropy, 

(2.6) fd (u(t, .)) dx < A (uo) dx . 

Secondly, we recall that (2.4) results from (2. la) by multiplying with qu (for 
smooth solutions, (2. la) implies (2.4) with equality, and for nonsmooth (en- 
tropy) solutions, (2.4) follows through a viscous regularization of (2.1), adding, 
e.g., a term -e/Au and letting e -- 0). Alternatively, (2.6) follows from (2.5a) 
by multiplication by -i, since -UAOt =Cuut = qt. Thus, to obtain the entropy 
control (2.6), we multiply with qu in (viscous regularizations of) (2.1a) and 
with -u in (2.5a). Now, in a Galerkin method for an equation A(w) = f, we 
typically may multiply by w itself but not easily by nonlinear functions of w 
(cf. Remarks 2.4 and 4.1 below). Thus, (2.5) may be viewed as a better starting 
point for a Galerkin method than (2.1), since the entropy control (2.6) is au- 
tomatically built in, using (2.5). However, to use a standard Galerkin method 
on (2.5) is not enough; to be able to prove that limits of finite element solu- 
tions of (2.5) satisfy the entropy inequality (2.4) locally and not just globally as 
stated in (2.6), we also need a streamline diffusion modification (cf. the proof 
of Theorem 3.1 below). 

We are now ready to introduce the finite element space to be used in the SD 
method for (2.1). Let 0 = to < tI < ... be a sequence of time levels, 

set In = (t, , t,+,) and introduce the 'slabs' Sn = Rd x In . For h > 0 and 
n = 0, 1, 2,..., let ihn be a, for simplicity quasi-uniform, triangulation of Sn 
into triangles K of diameter hK ' h with smallest angle uniformly bounded 
away from zero, and define for a given k > 1, 

V = {V c [(S)]' VIK c Pk(K), KE T} 

where Pk (K) denotes the set of polynomials on K of degree at most k. In 
other words, V h consists of continuous piecewise polynomials on the slab Sn . 
Typically, tn+I - tn " h, with the slab Sn one element wide. Note that since uo 
has compact support, it follows that also the solution u has compact support 
in iRd x [0, t] for any t. This means that we may restrict the functions in Vhn 
to be zero for JxJ large. 

We seek an approximate solution U = Uh in the space Vh = Hn>0 Vh , i.e., 
for n = 0, 1, 2, ..., we will have 

U 
|Sn 

E Vh 

Note that the functions in Vh are continuous in x and possibly discontinuous in 
t at the discrete time levels tn . The shock-capturing SD method for (2.1), based 
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on (2.5), can now be formulated: Find U c Vh such that for n = 0, 1, 2, 

AO(U)mUt + Ai (U)UX) 

? ( ? AO(U)Vt+IEAi(U)Vx dx dt 

(2.7) f AO(U)Ut + ZA1(U)UX vU.Vdxdt 

U~~V~~U.Vj -Vdxdxd Sn e~I + IV U| 

+ I UjVXU-1Xv dxdt 

+ | (U+ - U_) *v+ dx = O. Vf E Vh 

where dot denotes the usual scalar product in ]R"', Rd or Rd+l with corre- 
sponding norm I.I Further, U and U are related through U = q,(U) (note 
that the original variable U occurs in the last term in (2.7)). We also use the 
notation 

v, (t,)=lim V(t? + Sx), U0 =u0, V+ ( , x 
S-40O? n 

= 

V7 v = (V xi 
* * 

X vd) 1 Vv = (Vt' V1 vy 
X *1vd) 

d 

V y V Vy Vv.Vw =vw?VvVX Vtwt + ,Vy 1 
i1 1 

and for all K T 

f (U+ - U)Kn(RdIt }) if fKn(dX dx > 0, 

O. 0 otherwise. 

Finally, e, J and J are parameters tending to zero as h -* 0, and J = J(U) is 
a positive definite m x m matrix, the choice of which we specify in Remark 2.1. 
Concerning the choice of e, J and J, we normally expect to have e, , J = 

&(h"), with a 1 (cf. ?4 below). The streamline diffusion modification of 
the test functions is given by the J-term, while the shock-capturing is related to 
J- and J-terms, which clearly correspond to artificial viscosity terms, with the 
viscosity coefficients depending on the two components of the residual, namely 
IUt + El f'(U)X I and 1UK1 

Remark 2.1. The choice of J. The simplest choice of J is given by J = ChI 
with I the identity matrix. As pointed out in [7], this choice is not adequate 
in some situations. To see this, consider a constant-coefficient variant of (2.5) 
in the case of one space dimension: 

(2.8) Aowt + AwX = 0, 
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where thus AO and A are symmetric, with AO positive definite. Let now 
E = (Ao) 112p, where P is an orthogonal matrix consisting of eigenvectors of 
A (A 0y"/2A(A0)"1/2. Then E diagonalizes AO and A, 

(2.9) ET A E=I, E AE = A = diag(A), 

with ET denoting the transpose of E and A a diagonal matrix with elements 
Ai = the eigenvalues of A. Introducing the new variable T by w = EUY, we 
have, using (2.9), 

(Aowt + Aw,)-(v + 3(Aovt + Av,)) 
= (AOEUWt +AE7x).(Ev + 6(AOEUt + AEUx)) 

= (Tt + A~w7) -(F + E _'JE T (;t + A;Ut)) . 

Since wTt + ATIJ, = 0 is an uncoupled system of m scalar equations, we are led, 
in analogy with the scalar case [6, 10], to choose in an SD method for (2.8) 

E_ 5E-= h(I + A2-/= h diag(,l), Y A = (I +A 2 12 

i.e., 

(2.10) (5= hE(I+A2 1/2ET -hA- 12(I+A<) -/2(A /2 

If now the ,ul vary considerably in size, then diag(,ul) is not close to any 
multiple of I and thus, if we choose (s = ChI, then some of the components 
in the corresponding SD method for (2.8) would not get the correct streamline 
modification. Note that A and A, in (2.2) have the same eigenvalues, i.e., Al 
are the eigenvalues of A1 

In the case d > 1, with (2.8) replaced by Aowt + E AiwX= 0, it is not in 
general possible to diagonalize all the matrices Al with the same transformation. 
A natural generalization of (2.10) to the case d > 1 is given by 

d -1/2 

(2.11) ,(5=h(A0o1/ (i?Zi2) (Ao) /A i 

where A= (A= -l/2 A l/2 
In (2.7) we now choose ( = (5(t, x) according to (2.1 1), with the Al replaced 

by Al (U(t, x)) . 

Remark 2.2. It is possible to generalize the shock-capturing terms by replacing 
VU.VU by MOU)U, + El Ml Us V ̂ , where Ml, 1 =0..., d, are positive 
definite m x m matrices. Various choices of Ml have been proposed in [8]. 
In the case of one space dimension, a diagonalization as in Remark 2.1 may 
be used to find suitable M, . In several dimensions, the choice is less clear. It 
may be natural to choose Ml = AO, i = 0, ..., d, corresponding to adding 
diffusion close to shocks in the form -hAu in the conservation variables. So 
far, we have used M = Identity in the computations. E 
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Remark 2.3. Note that (2.7), although expressed in entropy variables, may be 
considered to have "conservation form", since on each slab 

U? + Zf (U)X - AO(U)Ut + AI(U) UX, 
i i 

In particular, this means that the correct Rankine-Hugoniot conditions are sat- 
isfied by limits of solutions of (2.7), see Theorem 3.1 below. E 

Remark 2.4. In the recent work [18] it is proved that the shock-capturing SD 
method may be applied also in conservation variables with the entropy control 
and entropy consistency maintained. This is related to the fact that with the 
shock-capturing term present, in a Galerkin method in conservation variables 
it is possible to multiply by Cu even with q, nonlinear (cf. Remark 4.1). 
A formulation in conservation variables seems to require less computational 
work, but more computational experience is needed to evaluate the merits using 
entropy or conservation variables. u 

3. CONVERGENCE TOWARDS ENTROPY SOLUTIONS 

In this section we prove that limits of finite element solutions given by the 
SD method (2.7) are entropy solutions of the conservation law (2.1). We recall 

that u c [L o(Q)]?f, Q = (0, oo) x lRd,is an entropy solution of (2.1) if for all 

C[C7A(Q)]' Q=[0, oo) x Rd, we have 

(3.1) f U ? Zft(U)PX ) dtdx ? f uo(0 l) dx = 0, 

and for all p ECO (Q) with ?0 > O 

(3.2) J(w~?+ E'x) dtdx>0. 

We assume that the entropy q is strictly convex, i.e., that there is a compact 
set D c R' and positive constants a, a and a2 such that for all v, w c D c 
Rmn with J = J(U) = (qu(U)) 

(3.3) C(v) - C(W) - qU(W)X(v - W) > CIV - WI2 

(3.4) aeh < x. x, Ix. Jy? < a2h Vx, y E Rm, IXI = Iy=l. 

We have the following result, where q lr denotes the inverse of ru,: D 
-u 

r(D) 

and u = qu(u). For definiteness we assume here that e = 6 = = h. 

Theorem 3.1. Suppose that a sequence offinite element solutions {Uh} of (2.7) 
with Range (Uh) c qu (D) converges boundedly a.e. in Q to a function u as h 

tends to zero. Then u = 7-'l(u) satisfies (3.1) and (3.2), and thus u is an 
entropy solution of (2.1 ). 

The proof is based on the following stability estimate where a and al are 

given in (3.3) and (3.4), respectively. 
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Lemma 3.1. For N = 1, 2 ... we have 

N-1 N-i 2 
/ (UN ) d+ 

1 
IU - URd+ ah |U +fi(U)| 

_ N- 1 xi t+E Z(Ux l~ d 
n =O Sn h + 

+ b Is Ul lVxUl dt dx < f ri(u0) dx. 
N-1 

lult +Eli fi~u,) Idtdxl 

n: R 

+s ( h + (117 (ul (Ux dtdx 

?snf U,?f'U),| VU dtd ?bf IUg IVxU2dtdx 

+ (+) _ ul (1+7) dx =, O 

so that, since U(t, x) = 0 for Ixl large, 

0= |f (5 dx- ) ( +) u ( + ) ( + ) ) 

n=O 

+ j j (u) ? Zf'(U)?) dtddx 

n n t+ I ( XI h + Vi 6_I_| U VU| dt d x 

+nZ U1+Z Ef'(U)x~ h + l U{dtdx+J ~ 

Vul ~~~~~~~~~~2 

/+~-u d |1(u)dx t hZ Uu+Zf'(U) dtdx 
n=n n 

N-1 

+ |dq ('7! 
1 

q)5(U)C U+ + * (q_- +) dx. 

n=O 

The lemma now follows from (3.3). u 
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We also need the following interpolation estimate and "superapproxima- 
tion" result, where ?hW c V. is a standard interpolate of a function w c 

Hn>0[H' (Sn) n F(Sn)]m, (Sn) is the space of continuous functions on Sn 

and II Ilk ,, denotes the norm in the Sobolev space [H k(w)]m. A proof of the 
superapproximation result is given in [18]. 

Lemma 3.2. There are constants C such that for w c [H1 (Sn) n F(Sn)]m, p c 

HI(Snf)n F(Sn), vcVh, n=0,1,2,. andk=0,1, 

h k 1W - 7th ls+ V7~'IlWn (h)nIIRd < Ch I~I2,~ ?hW~lk,Sn + \/iW- (7thW +li < 1C1|W|12,sn 

h Ilv8? - Xh(V()Ilk,sn + - (7rh(V))IIRd 

< ChilvilL (s t)(II(II1ls + hloII2,Sn) 

Remark 3.1. Note that the superapproximation (2.4) and interpolation esti- 
mates (2.3) in [12] are not stated correctly, but should be replaced by Lemma 3.2 
above or the following variant thereof: For Q = R x (0, oo), p c CO (Q), v c 

Vh I 

(3.5a) IIV( - 7h*(V0)IIs Q < Ch SIIvIIL(S)IIfIllQ' S = 0, 1, 

(3.5b) Z h|(vo)+ - (th(v))?IIR ? Ch2IIVIIL (S.)IkoII>l Q 
n=O 

together with the corresponding estimates for v 1 . Here, q' (p * W) is a 
mollification of (o, where wh is defined by 

()h(x, t) = w (X))w(t) w ?(s) h-= 0(s/h 

O C C(R), J sup(s)pds = I, sp = [-, 1]. 

The estimates (3.5) are proved in the appendix. The proofs of Theorems 3.1 
and 4.1 in [12] should then be modified by replacing (o by E. l 

We can now give the proof. 
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Proof of Theorem 3.1. To prove that u satisfies (3.1), we take v = (P in 
(2.7) where (0 E [CO (Q)]' to get 

j (Ut + ( ? f (u) )( *dtdx + j(U -U_) u ) dx 

= js (Ut+? f (U),) ( 0-h) dtdx 

fRd (u+ - u)Q- (7+h 
) dx 

-|j (uf + f (U)X) * ( (U) (rh (P)t + Z'i (U) (7hQ) dtdx 

_ t + El h 
, 

IVUI x1 UV )dd IU 4JZlf'(U)r'VU.V (7rh) dt dx h +fVUI - 
jIUIVJTUV x (7rh () dt 

E+ + + E+ E> 
-n n n n n 

Integrating by parts and summing over n, gives 

JQ (U .t + Ef (U) >P dtdx Id U0 dx E = ZE-E Rj 

By Lemmas 3.1 and 3.2 and using the assumption that fUIIL (Q) is uniformly 

bounded in h, we easily find that JRJ I < CV , j = 1,. .., 5, and (3.1) follows 
by letting h tend to zero, using Lebesgue's dominated convergence theorem. 

Next, taking v = nh(Uy) in (2.7) with (0 E Co'(Q), q > 0, we get by 
integrating by parts and summing over n > 0O 

IQ ( ) (Pt +Zq (U) (p) dt dx 

+ ld (q (U_) qU+)U (U+) * (_U+)fd 
n>O 

Ut 
n ( UX 5 t 

') ( (U' )pdt 

+ |Ut + f U(U)X 
IVU I ,p dt dx 

h?I VUI(dd 
8 8 

+~ jtI / I 7VXJU21 dtdx- EZFJ-- G, 

n>O jn p=1 n>O J=1 
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where 

= ( - - (x (Uo - (Uj )) dtddx 

=n j ( + E.t f (u)) [Ao(U)((U,)t- ) 

+ - (-h (UU )))] d t dx, 
Fn is (++Ef(~l d(oU)f+EAuux t 

Fn =Ed] h?IV-U VUUV(U - h(U U)) dt dx, 

U h + jVU (, ' 

F; = 3j |I UIV c U.V~jU U6P-win ~(U(o)) d t dx, 

= ~~~~~5j U A U~t Edtdx.P dtdx 

Arguing as above, we see that IGfl ? CVa, j = 1, ... , 8, and (3.2) follows 
letting h tend to zero, using the convexity of a. x 

4. CONVERGENCE FOR BUTRGERS' EQUATION 

As an example of the theoretical use of the shock-capturing terms we shall 
in this section prove uniform boundedness of the finite element solutions of a 
shock-capturing SD method with k = 1 (piecewise linears) applied to Burgers' 
equation 

(4.1a) ut + ur = 0, inQ = R x (0, oo), 

where u0 is a given bounded function with compact support. In [12] we proved 
that a subsequence of solutions Uh of an SD method for Burgers' equation 
without shock-capturing terms converges a.e. to an entropy solution u of (4.1) 

7~~~~~~~~~~~~ 

corresponding to the entropy Q = u /2 . In the proof we explicitly assumed that 
JJ Uh lL (Q) remains bounded as h tends to zero. As indicated, we shall now 
prove, by using the shock-capturing terms, that 11Uh HILQ(Q) in fact is uniformly 
bounded. In this way we thus obtain a complete convergence proof for the 
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shock-capturing SD method applied to Burgers' equation; cf. [16], where also 
uniqueness is proved by proving that the limit function u satisfies all entropy 
inequalities related to convex entropies, and thus is the solution in the Kruzhkov 
sense. 

Using the notation of ?3 with m = k = 1, we now consider the SD method 
(2.7) applied to (4.1) (with U = U corresponding to q (u) -= u2): Find U 
Uhe V V such that for n = O. 1, 2, ... 

j(Ut + UU,)(v + (5(vt + Uv,)) dx dt 

sn~~~~~~~~~~~~~~~~~~~~~ (4.2) + jutS + IVUX (I + I UI)V7U-1v dx dt 

+?S| UUlcvxdxdt+ (U-U)v dx =O VE 

where U_ U0 and 

~f(UI ?- U )yflKnR if KnR n is an edge ofK, En 
UIK 

0 ~~~~~otherwise h~ 

Rn = R x {tn}, n =O, 1 , 2. 

Further, (s, ( and 6 are positive parameters satisfying (5 = Ch, (s = Ch"t 
and (5 = Ch"t', where the al are constants with 0 < a I, a2 < 1. We also 
assume that the triangles K E T7n have right angles with two sides parallel to 
the x- and t-axis, so that the space-time triangulation has the following form 
(note that the meshes on adjacent slabs do not have to match). 

t 

tn i 

tn-1 

- L x 
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Our main result is now the following, choosing c = 0 for simplicity: 

Theorem 4.1. Suppose that uo c Lo(R) has compact support. Then there is a 
constant C such that the solutions U - Uh of (4.2) satisfy 

(4.3) 11 Uh IL (Q) < C, h > 0 . 

To prove this result, we first state the basic stability estimate for (4.2) ob- 
tained by taking v = U: 

M 
ll~~t 

T 
U || 2E ln _ n 12 

(51lu + UUII'Q Al+2 I +.-UI 
(4.4) + 

I 
lU+1 I2 + K |ut + uUUX (I + UI)IVU,2 dx dt 

M~~~~~ 
+ o I |U I(Lr) dxdt < 211U011R I M = O. 1, 2, ....1 

where QM = Un-s Sn . Note that the integrals over Qm are to be interpreted 
as a sum of integrals over the Sn with n < M. We shall further need the 
following two preliminary results. 

Lemma 4.1. There is a positive constant c independent of p such that for p = 
2m, m = 1, 2, ... and n = O. 1, 2, ..., 

? RnK IU+" I _( U+ ) XI IU+" L. (KnRn) d 
(4.5a) K I U Ind 

<? IUIUx(7h (Up -))xdxdt. 

Proof. Considering one triangle K E Thn with vertices (x1, tn), (x2, tn)I 
(x2, tn+l), where xi < x2, we note that UXIK and (7rh(UP-1))xIK are con- 

stant and I depends only on x. Hence, 

| I U] U(7t (UP [ )) x dx d t 

tn+ I - 
tn 

X, 
- n Tn 1 ~ 'T{~P A 

- 
_ B 
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and further, by simple computations, 

UX (7rh ( U ) ) 

(X~1)2 2(U(X2 , tn) U(X1 , t,))(Up (X2', tn) - U (XI , tn)) (2 - X 
) 

(X - 2 (U(x2, tn) U(Xl, t,))2(max(lU(x2 ttn)III U(XI, tn)l))- 
(2 XI) 

p-2 

* j [sign(U (X2, tn )U (XI I tn) ) 
1=0 

min(I U(x2, tn) I, I U(xI , tn) 1)/ max(|U(X2, tn)| IIU(XI, tn )|) 

2(U(X2, tn) U(XI tn)) 1 U+- L (KnR,) 2(X2 - XI) 

=(U+)2IIU+I[L KnR2 ) 

where sign(x) = x/IxI if lxi > 0 and sign(O) = 0. 

Nowlet f: SI -*R, S1 ={xER2: IxI= l},bedefinedby 

2 l Y,(1 -X) +y2XI dx 

For IUI # 0 we then have 

fX2 1Ufl UI(X-x) dx 
fx I > Ch inf f(y) >Ch, 

fX2 jUn UnI dxyS 

since f is continuous and strictly positive on SI . This proves the lemma, since 
(4.5) is trivially true when IUI _ 0. o 

Lemma 4.2. There is a constant c > 0 independent of p such that for p = 
2m, m=1,2,3,..., n=0, 1,2,.... 

f IUt ;UUl (I + IUI)VU-Vzrh(Up-')dxdt 

P2 E 1K IU l LU(l IUI)1vU1||U|L(K1dd 

The proof of Lemma 4.2 is analogous to that of Lemma 4.1 (see [16, 18] for 
details). 
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Proof of Theorem 4.1. Taking v = 7h(UP1 ) in (4.2), we get with p an even 
number > 4 

0= f (U,+UU,)Up ldxdt+j(U+f U)(U+f)P dx 

-|j(Ut+ UUX)(UP 
I 

-7?h(Up 1 ))dxdt 

n _ n)(( n P-1 _(TUp-1)+ dx 

i-5j - U +? Lh (1(DU V )U dxd 
+ fa (Ut + U ux) ((U P l )t + U(U P- W x dx dt 

I 
(Ut + U UX ) (( Up I) - 

(7rh Up I), + U( (Up I)x- (7h Up- )x )) dx dt 

+J| Vbx 1(I + I Uj)V U-77t UP dx dt 

Tn iYl 

Using now a standard interpolation estimate, we have 

JE 31 + IEl < Cp(h + ?) jut 1 U + UUxl (1 2UWpVU12HUH-2 dxdt 

Further, using again an interpolation estimate, we get 

41 Cp2h2 J -nU Un((Un)2UnHljp-3 x 

_< Cp h - LR. {IUI1 }nKd x 

+Cp h j u -UI( U+)dx=IIIn+IVK 

By Lemma 4.1 with p = 2, and (4.4), we have 

Z IvC c _p2hJ2 Ul _ u n 2dx d t <c p2d 
n>O Q (K 

Combining these estimates with Lemmas 4.1 and 4.2, we get by summation over 
n =0O.1, 2,..., N.for p3 < Cmin(5/h,5b/h), 

2f~i 2- n np- 

L -h I(U) L -(U: U )p(UI ) )dx 
n=O R 

+ - 1)f(U + UUjUp2 dxdt < 
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Using now the convexity of the function U - UP as in (3.3), we have 

II U IIL (R) + jP(P - 1) (Ut + UU)2U2 dxdt 

3h 
<IIUoIp (R)+CP _- N > O. 

The next step is to obtain Lp-estimates for all t E (0, oo). For tn < t < tn+l 
we have 

11 U(, 0 |li (R) = 11 U! IIPL (R) - t l(,SlL (R)d 

_ l_1 IILp(R) +P (I (Ut + UQX) U dxdtf f Up dxdt) 

? 1 IILp(R) + 6p(p - 1) j(Ut ? UUx)2 up-2 dx dt 

+ 46( 1) jtn I U(, S)IILP(R) ds 

Thus, by using Gronwall's lemma, we obtain for tN < t < tN+l 

(4.6) IIU(, t)I|IL(R) < CIIUOIIL(R) + CP 

This proves the existence of positive constants C and a0, independent of p 
and h, such that 

sup jjU(., t)IIL(R) < C if 4 < p < Ch'"O 

Finally, using an inverse estimate, we have 

IUhIIL"(Q) < C(ph 1)1/p sup IIU(., t)IIL (R) 
t>0 

< Cec1A +to)h"? In 1/h < C 

for h < C. It remains to estimate IIUIIL (Q) for h > C. By combining (4.4), 
(4.6) (with p = 2 ) and an inverse estimate, we get 

IIUIIL (Q) < Ch IIU0IIL,(R) < C, h> C . o 
Remark 4.1. We note that the proof of Theorem 4.1 is based on choosing 
the test functions v = 7rh(UP ') with p large and controlling the difference 
Up I - rh (UP-1 ) using the shock-capturing terms. Thus the shock-capturing 
terms make it possible to use test functions other than the usual choice v = U, 
giving the stability estimate (4.4); cf. the discussion in ?2. Note, however, that 
the coerciveness of the shock-capturing terms with v = 7lh (Up 1) is established 
directly in Lemmas 4.1 and 4.2, using the fact that k = 1 . In the case k > 1, 
the shock-capturing terms are still defined using piecewise linears on finer tri- 
angulations, which makes it possible to extend the L.0 bound and convergence 
proof to methods of arbitrary accuracy, see [17, 18]. El 
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5. NUMERICAL RESULTS 

In this section we give some numerical results obtained by applying the shock- 
capturing SD method (2.7) with k = 1 in the case of the time-dependent 
compressible Euler equations for polytropic gas with adiabatic exponent y = 1.4 
in a two-dimensional channel flow with a step-up at Mach 3. Our entropy 
variable formulation (2.5) is based on the physical entropy for the compressible 
Euler equations given in [4, 6]. A more detailed account of various aspects of 
the implementation will be presented in [3]. 

In (2.7) no boundary conditions are needed because the initial function u0 
has compact support and the spatial domain is the whole of id . In the present 
case, the computational domain Q (see Figure 5.1) is bounded, and then (2.7) 
was modified as follows so as to include relevant boundary conditions. On the 
inlet AB (see Figure 5.1) all components of U were prescribed with the free 
stream values given by 

pressure = 1.0, density = 1.4, 

horizontal velocity = 3.0, vertical velocity = 0.0, 

and along the solid walls BCDE and AF the normal velocity was set to zero. 
Accordingly, the variational formulation (2.7) was then modified in the usual 
way by restricting the components of the test functions v to be zero where 
corresponding components of U are prescribed. In particular, at the outlet 
boundary EF, both U and the test functions v were varying freely. Thus the 
boundary conditions can easily be handled in the present method (which is one 
of the advantages of variational techniques). 

The initial function u0 was set equal to the free stream value, in particular 
with normal velocity different from zero on the step-up CD. The evolution was 
then abruptly started by forcing the normal velocity to be zero on CD for t > 0. 

In the implementation, an automatic adaptive procedure was used to con- 
struct the finite element mesh Th on each slab S, . The mesh Th was of the 
form Th = f x In, with Z, = { T} a triangulation of the underlying spatial 
domain Q. The mesh Zn was constructed from Zn-i by local mesh refine- 
ment, or coarsening, according to the size of the second partial derivatives of 
the exact solution estimated through the computed solution Un (for details see 
[3] and [1]). The time step tn+l - tn . i.e., the thickness of the slab, was chosen 
to be of the order of the smallest diameter of the triangles in Zn . 

The method (2.7) gives a nonlinear system of equations to be solved on 
each time step. This system was solved iteratively using Gaussian elimination 
or relaxation methods on linearized forms of the equations (2.7), with U+ - 
Un replaced by AO(U)(U+ - U_), and with the 'frozen' coefficients A1(U) 
successively updated using the last available approximation of U. 
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FIGURE 5.1 
Computational domain ABCDEFA. 

FIGURE 5.2a 
Mesh at time 1.95. 

FIGURE 5.2b 
Density at time 1.95 with mesh as in Figure 5.2a. 

FIGURE 5.2c 
Isodensity lines at time 1.95 with mesh as in Figure 5.2a. 
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FIGURE 5.3a 
Mesh at time 4. 

FIGURE 5.3b 
Density at time 4 with mesh as in Figure 5.3a. 

FIGURE 5.3c 
Isodensity lines at time 4 with mesh as in Figure 5.3a. 

FIGURE 5.4 
The computational domain and boundary conditions. 
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X-CWROINR1E 

FIGURE 5.5 
Mesh, contour lines for density and density profile at 

X2 = 0.5, with shock-capturing. 

FIGURE 5.6 
Mesh, contour lines for density and density profile at 

x2 = 0.5, without shock-capturing. 

In Figures 5.2-5.3 we give the computed velocity, density and mesh at time 
1.95 and 4.0 obtained using the following parameter values: 5 according to 
(2.11), 5 = h/20, 5 = 0, where h is the local element size. 
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We also present in Figure 5.5 the results obtained with the same SD method 
for the Euler equations applied to a stationary shock reflection problem (cf. 
[1 5]) with geometry and boundary conditions according to Figure 5.4. The 
numerical solution is obtained after 150 time steps with k = hmin/2. We 
further give in Figure 5.6 the corresponding results with no shock-capturing, 
i.e., with ( = ( = 0. We note that in both cases the shock is captured within a 
couple of elements and that the slight over- and under-shoots in Figure 5.6 are 
eliminated when shock-capturing is added. 

APPENDIX 

Proof of (3.5). It follows by the definition of 0 that for sufficiently small h, 

(A1) 110111,Q < ll Q 

(A2) 11 112,Q < Ch-' 11q 11l Q, 

(A3) <I8 - FIIQ ? VhIIqpII1 j 

Thus, 

IIv~~ - 7t~Vh(VO)IQ < IIv(P - )IIQ_ + 1V0 - 7rh(V0)IIQ ++II, 

where by (A3), 

I < IIV|ol(| - IIQ ? VIhIIVILoL-11ll,0 X 

and by Lemma 3.2, (Al) and (A2), 

II < ChI|vIIL'(Ik0lll Q + hlk1 ll2,Q) ? ChlIIvIl .Il11 ,Q 

This proves (3.5a) for s = 0. The case s = 1 follows similarly by noting that 

IIV((P - 0)II1,Q < IIVIWokOO|? - 0IL6 + IIVMI-IuI - I1 1,Q < CIIVIILOOIRI?11Q, 

where in the last inequality we used the inverse estimate liv 1I w', 00 < Ch lIv "L0 . 
Finally, one can prove, see [18], that for f e H' (Sn) 

11<RII < 4(h' IjfIKs +hllfll ), 

and thus 
00 

h 1 |(v )+ (7())|| < 4(||vf-f V)| + h P 1 
2, 2 ZhIv +) - ( +~)?I R -(~~ 7rh (V ~)IIQ +hIvo-7rh (V)l1, 

n=O 

which by (3.5a) proves (3.5b). El 
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